Alaska Battery/Diesel Hybrid System Modeling

Presented To:

DOE Energy Storage Systems Peer Review Arlington, VA November 14, 2001

Presented By:

Josh Pihl
SENTECH, INC.

Conclusions

- We have developed a user-friendly screening tool to determine the feasibility and desirability of installing a battery/diesel hybrid generating system in remote villages
- Analyses utilizing the screening tool indicate:
 - Battery/diesel hybrid systems can reduce fuel consumption in small rural Alaskan villages by over 20%
 - Such systems make economic sense under several scenarios:
 - When a village has a smaller, unused genset that can be retrofitted with a battery system
 - When the existing genset needs to be replaced
 - When storage tanks need to be replaced

Outline

- Motivation
- Objective
- Work Completed
- Demonstration
- Preliminary Results
- Conclusions
- Future Work
- Contributors

Motivation

- High electricity prices in rural Alaskan villages
 - High diesel fuel costs
 - Even higher maintenance costs
 - Currently subsidized under Power Cost Equalization Program
- Aging diesel storage tanks starting to leak
- Energy security

Both the State of Alaska and rural electric utilities are looking for solutions to reduce the fuel consumed to generate electricity.

Objective

Phase I: Assess the impact of integrating battery energy storage with conventional diesel-generator power systems located in remote U.S. villages (early work co-funded by USAID)

Phase I

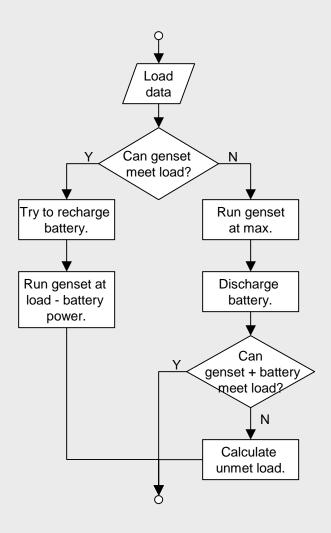
- Identified candidate villages
- Obtained load data (Chistochina and Selawik)
- Identified two operating regimes:
 - Peak Shaving reduce diesel size, meet peaks with battery
 - Cycle Charging run diesel at more efficient full loading
- Developed spreadsheet model
 - Simulated operation of hybrid system on load data
 - Predicted fuel savings and life cycle costs
 - Peak shaving only

Phase I – Results

- Significant fuel savings possible (>10%)
- Economics unfavorable at existing fuel prices and component costs

Phase I – Responses

- Relied on user intuition for battery system design, resulting in oversized battery banks
- Alaskan stakeholder feedback:
 - Add environmental metrics
 - Simplify user interface



Objective

Phase II: Develop a user-friendly screening tool that analyzes the performance and economics of battery/diesel hybrid electricity generating systems for remote villages

Flowchart - Peak Shaving

Phase II

Converted model from Excel spreadsheet to Visual Basic for Applications program:

- Simple, interactive user interface
- Clearly formatted output reports (Excel spreadsheets)
- Flexible inputs to allow for range of user experience levels
- Multiple load data formats
- Optimized, more accurate code

Phase II

Added features:

- Cycle Charge algorithm
- Economic parameters
 - Diesel Operation and Maintenance (O&M) Costs
 - Projected life for battery and diesel based on duty cycle
- Automatic PCS sizing
- New decision-making metrics
 - Unmet load indicator
 - Payback period
 - Avoided emissions
- User Manual

Chistochina, AK Analysis Key Inputs:

• Load Characteristics:

<u>June 1998</u> <u>November 1998</u>

Mean: 29 kW 44 kW

Maximum: 84 kW 65 kW

• Fuel Price: \$0.85/gallon – located on highway

Battery System Costs: \$200/kWh + \$50/kWh B.O.S.

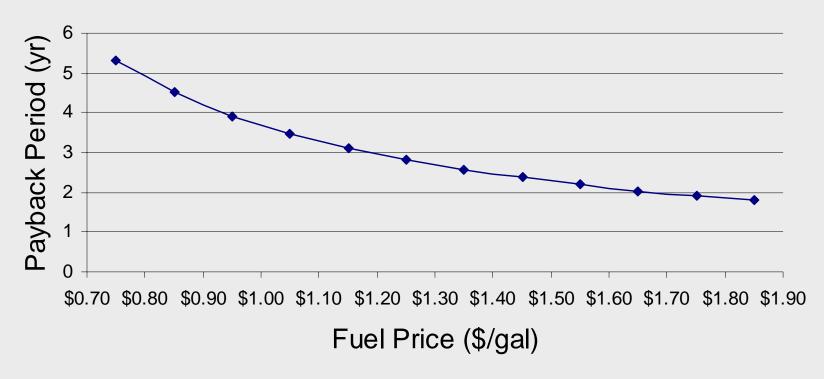
• PCS Costs: \$400/kW

Case 1: Retrofit existing, smaller unused diesel

• Baseline Diesel: 100 kW

• Hybrid Diesel: 60 kW

• Battery Bank: 20 12V 55Ah series-connected VRLA modules


• PCS: 28 kW parallel connected Inverter/Rectifier

Dispatch Algorithm: Peak Shaving

Output	June 1998	November 1998
Fuel Savings (%)	16.0%	14.2%
Annual Fuel Savings (gal/yr)	4,555	4,557
Net Annual Savings (\$/yr)	\$3,184	\$3,185
Payback Period (yr)	4.5	4.5

Variation of Payback Period with Fuel Price for Chistochina, AK

Based on an existing 60 kW diesel which is retrofit with a 240V 55Ah battery energy storage system that is run in a peak shaving regime; payback period calculated from savings as compared to operation of baseline 100 kW diesel

Case 2: Existing diesel generator in need of replacement

Baseline Diesel: 85 kW

• Hybrid Diesel: 45 - 60 kW

• Battery Bank: 13.2 – 20.4 kWh

Dispatch Algorithm: Peak Shaving

Diesel Size (kW)	60 (retrofit)	55	50	45
Battery Size (kWh)	13.2	15.8	19.2	20.4
Fuel Savings (over 85 kW diesel)	10.6%	12.7%	14.6%	16.3%
Projected Battery Life (yr)	7.0	5.9	2.2	1.0
Net Annual Savings (\$/yr)	\$4,407	\$2,505	\$1,532	\$1,549
Payback of Net Hybrid Investment (yr)	Immediate	0.75	2.2	1.4

June 1998 load data from Chistochina, AK

Case 3: Storage tank replacement

Baseline Diesel: 100 kW

• Hybrid Diesel: 45 - 60 kW

• Battery Bank: 13.2 – 20.4 kWh

• Dispatch Algorithm: Peak Shaving

• Storage tank replacement costs: \$6.90/gal (AEA low estimate)

Diesel Size (kW)	60 (retrofit)	55	50	45
Battery Size (kWh)	13.2	15.8	19.2	20.4
Fuel Savings (%)	16.0%	17.9%	19.7%	21.3%
Reduced Storage Needs (gal)	4,555	5,104	5,612	6,078
Net Annual Savings (\$)	\$5,925	\$4,318	\$3,685	2,314
Payback of Net Hybrid Investment (yr)	Immediate	2.2	1.9	1.2

June 1998 load data from Chistochina, AK

Conclusions

- We have developed a user-friendly screening tool to determine the feasibility and desirability of installing a battery/diesel hybrid generating system in remote villages
- Analyses utilizing the screening tool indicate:
 - Battery/diesel hybrid systems can reduce fuel consumption in small rural Alaskan villages by over 20%
 - Such systems make economic sense under several scenarios:
 - When a village has a smaller, unused genset that can be retrofitted with a battery system
 - When the existing genset needs to be replaced
 - When storage tanks need to be replaced

Future Work

- Demonstrate to Alaskan stakeholders and obtain feedback
- Utilize data from villages for model validation and improvements
- Add renewable generation (PV, possibly wind and/or hydro)
- Aid in selection of a demonstration site
- Develop Specification Libraries
- Add battery system optimization routine
- Perform a market analysis for diesel/battery hybrid systems in Alaska

Future Work

- Other issues to consider in future versions:
 - Partial SOC cycling
 - Battery O&M costs (to account for flooded batteries)

Contributors

• Sandia National Laboratory:

David Trujillo (Project Manager)

Paul Butler

Stan Atcitty

• SENTECH, INC.:

Irwin Weinstock

Erin Cready

Josh Pihl

Rajat Sen

Alaska Energy Authority: Dennis Meiners

